If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9k2 + 12k + 1 = 0 Reorder the terms: 1 + 12k + 9k2 = 0 Solving 1 + 12k + 9k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.1111111111 + 1.333333333k + k2 = 0 Move the constant term to the right: Add '-0.1111111111' to each side of the equation. 0.1111111111 + 1.333333333k + -0.1111111111 + k2 = 0 + -0.1111111111 Reorder the terms: 0.1111111111 + -0.1111111111 + 1.333333333k + k2 = 0 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + 1.333333333k + k2 = 0 + -0.1111111111 1.333333333k + k2 = 0 + -0.1111111111 Combine like terms: 0 + -0.1111111111 = -0.1111111111 1.333333333k + k2 = -0.1111111111 The k term is 1.333333333k. Take half its coefficient (0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. 1.333333333k + 0.4444444442 + k2 = -0.1111111111 + 0.4444444442 Reorder the terms: 0.4444444442 + 1.333333333k + k2 = -0.1111111111 + 0.4444444442 Combine like terms: -0.1111111111 + 0.4444444442 = 0.3333333331 0.4444444442 + 1.333333333k + k2 = 0.3333333331 Factor a perfect square on the left side: (k + 0.6666666665)(k + 0.6666666665) = 0.3333333331 Calculate the square root of the right side: 0.577350269 Break this problem into two subproblems by setting (k + 0.6666666665) equal to 0.577350269 and -0.577350269.Subproblem 1
k + 0.6666666665 = 0.577350269 Simplifying k + 0.6666666665 = 0.577350269 Reorder the terms: 0.6666666665 + k = 0.577350269 Solving 0.6666666665 + k = 0.577350269 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = 0.577350269 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = 0.577350269 + -0.6666666665 k = 0.577350269 + -0.6666666665 Combine like terms: 0.577350269 + -0.6666666665 = -0.0893163975 k = -0.0893163975 Simplifying k = -0.0893163975Subproblem 2
k + 0.6666666665 = -0.577350269 Simplifying k + 0.6666666665 = -0.577350269 Reorder the terms: 0.6666666665 + k = -0.577350269 Solving 0.6666666665 + k = -0.577350269 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = -0.577350269 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = -0.577350269 + -0.6666666665 k = -0.577350269 + -0.6666666665 Combine like terms: -0.577350269 + -0.6666666665 = -1.2440169355 k = -1.2440169355 Simplifying k = -1.2440169355Solution
The solution to the problem is based on the solutions from the subproblems. k = {-0.0893163975, -1.2440169355}
| 7(x+5)-10=7x+20-5 | | 172x+160=20x | | 4(y-1)-2=3y | | 4y-4/15 | | 3-7x=3x-2 | | 6(2l+3)=54 | | 4-2x-1=11-4x | | 2(a-5)=28 | | 12+2y=-12+10y | | 2x-5x=1+5 | | 7y-30=9 | | iz=3+1 | | 5(x-3)+10=15 | | 3x^4-6x^3-0.16x^2=0 | | (x+2)x(x+3)=56 | | 25+X=4 | | 2(3x-1)+7=9-x | | 3xy-3yx= | | 2x-14=-2(x+3)-3 | | 3/4a=1/4 | | X=12z | | (d^3+1)y=0 | | Ix+2l=3 | | 12=4!x^(1/2) | | 12=4!x(1/2) | | 3z-5=p | | (4+8x)=10 | | 48/][587 | | 150x2/3 | | 12x+40x=572 | | 5(2x-1/25) | | cosx-(x/4)=0 |